Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia.

نویسندگان

  • Evgeni Efimenko
  • Oliver E Blacque
  • Guangshuo Ou
  • Courtney J Haycraft
  • Bradley K Yoder
  • Jonathan M Scholey
  • Michel R Leroux
  • Peter Swoboda
چکیده

The intraflagellar transport (IFT) machinery required to build functional cilia consists of a multisubunit complex whose molecular composition, organization, and function are poorly understood. Here, we describe a novel tryptophan-aspartic acid (WD) repeat (WDR) containing IFT protein from Caenorhabditis elegans, DYF-2, that plays a critical role in maintaining the structural and functional integrity of the IFT machinery. We determined the identity of the dyf-2 gene by transgenic rescue of mutant phenotypes and by sequencing of mutant alleles. Loss of DYF-2 function selectively affects the assembly and motility of different IFT components and leads to defects in cilia structure and chemosensation in the nematode. Based on these observations, and the analysis of DYF-2 movement in a Bardet-Biedl syndrome mutant with partially disrupted IFT particles, we conclude that DYF-2 can associate with IFT particle complex B. At the same time, mutations in dyf-2 can interfere with the function of complex A components, suggesting an important role of this protein in the assembly of the IFT particle as a whole. Importantly, the mouse orthologue of DYF-2, WDR19, also localizes to cilia, pointing to an important evolutionarily conserved role for this WDR protein in cilia development and function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes

Sensory organelle cilia have critical roles in mammalian embryonic development and tissue homeostasis. Intraflagellar transport (IFT) machinery is required for the assembly and maintenance of cilia. Yet, how this large complex passes through the size-dependent barrier at the ciliary base remains enigmatic. Here we report that FBF1, a highly conserved transition fibre protein, is required for th...

متن کامل

The molecular identities of the Caenorhabditis elegans intraflagellar transport genes dyf-6, daf-10 and osm-1.

The Caenorhabditis elegans genes dyf-6, daf-10, and osm-1 are among the set of genes that affect chemotaxis and the ability of certain sensory neurons to take up fluorescent dyes from the environment. Some genes in this category are known to be required for intraflagellar transport (IFT), which is the bidirectional movement of raft-like particles along the axonemes of cilia and flagella. The cl...

متن کامل

The conserved proteins CHE-12 and DYF-11 are required for sensory cilium function in Caenorhabditis elegans.

Sensory neuron cilia are evolutionarily conserved dendritic appendages that convert environmental stimuli into neuronal activity. Although several cilia components are known, the functions of many remain uncharacterized. Furthermore, the basis of morphological and functional differences between cilia remains largely unexplored. To understand the molecular basis of cilia morphogenesis and functi...

متن کامل

An Essential Role for DYF-11/MIP-T3 in Assembling Functional Intraflagellar Transport Complexes

MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle compl...

متن کامل

Chlamydomonas IFT70/CrDYF-1 Is a Core Component of IFT Particle Complex B and Is Required for Flagellar Assembly

DYF-1 is a highly conserved protein essential for ciliogenesis in several model organisms. In Caenorhabditis elegans, DYF-1 serves as an essential activator for an anterograde motor OSM-3 of intraflagellar transport (IFT), the ciliogenesis-required motility that mediates the transport of flagellar precursors and removal of turnover products. In zebrafish and Tetrahymena DYF-1 influences the cil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2006